Solar panel analysis with adversary neural networks

Felipa Elvira Muuoz-Ccuro, Mercy Jeaninna Alvarado Mamani, Victor Daniel Hijar Hernandez, Maria Del Carmen Emilia Ancaya-Martinez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

When solar panels received the irradiance from the sun, early detection is important to prevent fault or fast degradation. This research article provides a new method using 'Generative Adversary Neural Networks' [1] (GANN), with a deep learning techniques, for evaluation of the degradation in solar panels (SP). The methodology required root cause analysis for SP degradation, it considered four stages for the deep learning: 'preprocessing, segmentation, extraction, and classification' [11]. In this paper, we are determined artificial intelligence methodology and new neural network proposal for panel degradation detection based on root cause analysis [2]. The effectiveness of the results were 97.5%; with minimum information. However, the training process produces 0.105 % false positives.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665412216
DOI
EstadoPublicada - 5 ago. 2021
Publicado de forma externa
Evento28th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021 - Virtual, Lima, Perú
Duración: 5 ago. 20217 ago. 2021

Serie de la publicación

NombreProceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021

Conferencia

Conferencia28th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021
País/TerritorioPerú
CiudadVirtual, Lima
Período5/08/217/08/21

Huella

Profundice en los temas de investigación de 'Solar panel analysis with adversary neural networks'. En conjunto forman una huella única.

Citar esto